Mixing of the Upper Triangular Matrix Walk

نویسندگان

  • YUVAL PERES
  • ALLAN SLY
چکیده

We study a natural random walk over the upper triangular matrices, with entries in the field Z2, generated by steps which add row i + 1 to row i. We show that the mixing time of the lazy random walk is O(n) which is optimal up to constants. Our proof makes key use of the linear structure of the group and extends to walks on the upper triangular matrices over the fields Zq for q prime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Walk on Uppertriangular Matrices Mixes

We present an upper bound O(n 2) for the mixing time of a simple random walk on upper triangular matrices. We show that this bound is sharp up to a constant, and nd tight bounds on the eigenvalue gap. We conclude by applying our results to indicate that the asymmetric exclusion process on a circle indeed mixes more rapidly than the corresponding symmetric process.

متن کامل

Random walk on upper triangular matrices mixes rapidly

We present an upper bound O(n2) for the mixing time of a simple random walk on upper triangular matrices. We show that this bound is sharp up to a constant, and find tight bounds on the eigenvalue gap. We conclude by applying our results to indicate that the asymmetric exclusion process on a circle indeed mixes more rapidly than the corresponding symmetric process.

متن کامل

On derivations and biderivations of trivial extensions and triangular matrix rings

‎Triangular matrix rings are examples of trivial extensions‎. ‎In this article we determine the structure of derivations and biderivations of the trivial extensions‎, ‎and thereby we describe the derivations and biderivations of the upper triangular matrix rings‎. ‎Some related results are also obtained‎.

متن کامل

A Super-class Walk on Upper-triangular Matrices

Let G be the group of n×n upper-triangular matrices with elements in a finite field and ones on the diagonal. This paper applies the character theory of Andre, Carter and Yan to analyze a natural random walk based on adding or subtracting a random row from the row above.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011